
with a natural crack, which lay for about a year under room conditions. Under the same con- 
ditions as in the experiment, the crack opened up with deformations much smaller than 0.39. 
10 -3 . This fact is evidently explained by the relaxation of induced stresses. 

We note in conclusion that for small deformations, a natural macrocrack does not open up 
completely, opening up of the crack is opposed by the compressive induced stresses, and since 
a loosening zone evidently accompanies the formation of a natural crack in any material, the 
results of the present work are apparently also valid for a wider class of materials. 
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EXISTENCE OF SOLUTIONS IN DYNAMICS PROBLEMS OF 

ONE-DIMENSIONAL PLASTIC STRUCTURES 

A. M. Khludnev UDC 539.214+539. 374+517.9 

The distinctive feature in the formulations of elastic--plastic and rigid--plastic prob- 
lems is the presence of an inequality connecting the plastic strain rate and the magnitude 
of the running stresses. This inequality, called the Mises maximum principle, includes r 
plastic strain rate components (r depends on the dimensionality of the problem), where it is 
arranged so that it actually replaces r equations and the system of governing relationships 
is hence closed. Therefore, it turns out that upon the assignment of initial and boundary 
conditions, the rates and stresses are determined at each point, and moreover uniquely. Let 
us note that a corollary of the mentioned inequality that describes the proportionality be- 
tween the plastic strain component and the components of the flow surface gradient is often 
used in finding the approximate solutions (by a numerical or analytic method). As a rule, 
this results in openness of the system of equations. In this sense the utilization of the 
maximum principle in its initial form is more preferable despite the fact that the inequality 
itself is a corollary of the more general Drucker postulate. In particular, formulation of 
the problem by using the inequality was examined in [I], which permitted setting up the sol- 
vability of the three-dimensional dynamic elastics-plastic problem. 

Generalized stresses (forces, moments, etc.) and strain rates of the middle surface take 
part in the formulation of elastic--plastic and rigid-plastic problems for thin-walled struc- 
tures of the shell, plate, and beam type. They are also interrelated by using inequalities 
[2, 3]. Definite progress has been achieved in the investigation of problems of this kind 
from the viewpoint of an approximate description of the strain processes. This concerns the 
case of one space Variable especially (see the survey [4]). However, despite the large number 
of papers on this topic, in practice there are no results referring to the investigation of 
the correctness in the formulations of such problems. Boundary-value problems for one- 
dimensional elastic-plastic and rigid--plastic structures are considered in this paper, and 
results on solvability are formulated. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, PP- 150-156~ March-April, 1983. Original article submitted April 28, ;982. 
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Taking account of shear and rotational inertia, the beam dynamics equations have the 

form [5] 

l l ~ u t : ' ~ n x - - ] l  = O, l ~ v t - - m  x + q - - f 2  = 0 ,  

13~----wt--qx--fa = O, 

(1) 

where m, n, q are the bending moment, force, and transverse force, respectively; u, velocity 
of points of the beam middle line along the Ox axis; w, deflection rate; v, rate of change 
of the angle of rotation of the normal to the Ox axis; and fi, i = I, 2, 3, external loads. 

Let us first examine an ideal rigid--plastic problem. Let the flow condition have the 
form ~(n, m, q) = I. It is assumed that ~ is a convex continuous function. The plastic 
strain rate is determined from the flow law associated with the function ~. The correspond- 
ing maximum principle has the form [2] 

u~(~ - n) + v~(m - m) + (wx + v)($ - @ ~ 0 (2) 

f o r  any  (n ,  m, q)  s u c h  t h a t  ~ ( n ,  m, q ) ~  1. 

I t  t u r n s  o u t  t h a t  t h e  s y s t e m  o f  e q u a t i o n s  ( l )  and  t h e  i n e q u a l i t y  (2)  a r e  a s y s t e m  o f  
c l o s e d  r e l a t i o n s h i p s  i n  t h e  s e n s e  t h a t  f o r  g i v e n  i n i t i a l  and  b o u n d a r y  c o n d i t i o n s  t h e  e x i s -  
t e n c e  o f  t h e  f u n c t i o n s  u ,  v ,  w, n ,  m, q c a n  be  e s t a b l i s h e d .  To f o r m u l a t e  t h e  r e s u l t  e x a c t l y ,  
a s e t  o f  n o t a t i o n s  mus t  b e  i n t r o d u c e d .  We f i r s t l y  d e t e r m i n e  t h e  c l o s e d  c o n v e x  s e t  r e l a t e d  
to the flow condition 

K = {(n, m, q)ln, m, q ~ L"-(a, b), gO(n, m, q ) ~  t 

almost everywhere in (a ,  b)}. 

We consider that 0~K. We denote by HS(a b) the space of Sobolev functions that have , 
square summable generalized derivatives in the interval (a, b) to the order of s inclusive 
and equal 0 for x = a to order s -- I. We define H~(a, b) analogously. Also let Q = (a, b) x 

(0, T), T > 0. For brevity, we shall use the notation P = (u, v, w) and R = (n, m, q). 

Formulation of the problem in the form of integral identities and inequalities in which 
the derivatives with respect to the space variable are dumped in the trial function is most 
natural. This latter circumstance is related to the fact that all first derivative with 
respect to x exist as functions from the space L2(Q). 

The following result that refers to the dynamic rigid-~plastic problem for a beam on the 
basis of a model taking into account the shear and inertia of rotation is valid. 

THEOREM I. Let fi, fit~L2(Q), i = I, 2, 3. Then there exist and, moreover, are unique 
functions P = (u, v, w), R = (n, m, q) that satisfy the following relationships 

b 

(uth + nhx -- hh)dx  = 0 Vh ~ H~ (a, b); (3)  
a 

b 

~(t,th ~ mhx ~ qh --/~h) dx = 0 Vh ~ H~ (a, b); (4)  
a 

b 

.f (wth + qh~ -- /ah)dx = 0 Vh ~ Hi (a,b); (5)  
a 

b 

n (6) 

where P = 0 for t = 0, R(t)~K almost everywhere on (0, T), P, Pt~L~(0, T; L=(a, b)), 
l (a ,  b)).  R ~ L m ( 0 ,  T; H b 

The i n c l u s i o n  R ( t ) ~ K  means  t h a t  t h e  g e n e r a l i z e d  s t r e s s e s  do n o t  e x c e e d  t h e  f l o w  l i m i t .  

A s cheme  f o r  t h e  p r o o f  o f  t h i s  t h e o r e m  i s  p r e s e n t e d  b e l o w .  L e t  B d e n o t ~  t h e  p e n a l t y  
o p e r a t o r  r e l a t e d  t o  t h e  s e t  K and  a c t i n g  f rom [ L = ( a ,  b ) ]  a t o  [ L = ( a ,  b ) ]  3. I t  c a n  b e  c o n -  
s i d e r e d  t h a t  t h e  o p e r a t o r  B i s  c o n t i n u o u s  and  m o n o t o n i c .  L e t  ~ ,  6 > 0 be  f i x e d  n u m b e r s .  We 
c o n s i d e r  t h e  a u x i l i a r y  p r o b l e m  w i t h  t h e  p e n a l t y  

I , = 0 ,  i =  t, 2, 3, (7) 
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14 ~ -  e n  t - -  Ux -4- 6-1B(R)1 ----" 0; 

l~ ~ ern t - - v x  ~-  6-~B(R)~ ~ 0; 

l 6 -~- eqt - -  zv.~ - -  v "I- 6-~B(R)a = 0; 

P = 0 ,  R = 0fo: t = 0 ;  

P = 0  for x = a , R = 0  for x = b .  

Here B(R) i denotes the components of the penalty operator. 

( 8 )  

(9) 

(10) 

( i t )  

(12) 

Insertion of the parameters 
is actually equivalent to the fact that the initial rigid--plastic problem is approximated 

by an elastic--plastic problem (with the Young's modulus ~-i). In turn, the latter is approx- 
imated by aprob!emwith the penalty (7)-(12). Let us first establish its sensitivity. This 
can be done by using the Galerkin method by selecting the bases {q,)}, {tpj}, j = 1, 2, 3 .... , 
in the spaces H~(a, b) and H~(a, b), respectively. The approximate solution should be sought 
in the form 

P"(t)--:: ~_~ a ~ ( t ) ~ i ,  R * ( t ) =  b{ ( t )~ .~ ,  
i = l  "i=l. 

where the three-component vector-functions aS(t) bS(t) are determined from the following 

systems of ordinary differential equations 

b b 

= 0 ,  i = 4 ,5 ,6;  1 = 1 , 2  . . . . .  s. 

We consider the derivatives with respect to the space variable to be dumped in the basis func- 
tions when writing these equations (exactly as in writing the identities (3)-(5)). The ini- 
tial data for ps, R s are zero. An a priori estimate of problem (7)-(12) has the following 
form 

max {11P (t)II + !1P, (t)li + e '/~ II R (t)II + s~/~ll R~ (t)Ill ~< c~. (13) 
O~t~<T 

The constant ci depends only on the function fi (i = I, 2, 3) and T, and]i'll is the norm in 
L=(a, b). An estimate is obtained by using multiplication of (7)-(10), respectively, by u, 
v, w, n, m, q, subsequent differentiation with respect to t, and multiplication by ut, vt, wt, 
nt, mt, qt and taking account of the monotonicityof the penalty operator. Reproduction of the 
a priori estimate for the Galerkin approximation is realized in the usual manner. Thus the 
estimate (13) might be considered valid for ps, R s with a constant ci independent of s. This 
circumstance permits making a conclusion about the solvability of the Galerkin equations in 
the interval (0, T) and realizing the passage to the limit there as s § =. Let us emphasize 
that although the limit equations will be satisfied in the sense of integral identities (ana- 
logous to (3)-(5)) in which the derivatives with respect to x are dumped in the trial func- 
tions, it can be considered that P~L~(0, T; H~(a, h)), R~L=(0, T" Hi(a, b)) (because of the 
validity of the equations in the sense of distributions). Actually, P and R depend on the 
parameters e, 6. In this connection, we note that an estimate of the function P in the space 
L~(0, T; H~(a, b)) is not uniform in a, 6. The fact that B(R s) converges weakly to B(R) in 
L 2(Q) is confirmed by using the monotonicity of the operator B. 

The next stage in the discussion is the passage to the limit as g + 0 in (7)-(12). We 
equip the solution with the symbols e, 6. The following estimates hold for this solution 

max {]Ip~6(~)ll + tlp~ (t) l}} ~ o ,  max []R~6(t)!l , < c a  (14) 
O-..<t-..<T - 0~<t<T H b (a,b) 

w i t h  the  c o n s t a n t s  i n  the  r i g h t  s i d e s  i n d e p e n d e n t  o f  ~, 6. As b e f o r e ,  the  f i r s t  i s  o b t a i n e d  
by u s i n g  m u l t i p l i c a t i o n  o f  ( 7 ) - ( 1 0 )  and the  e q u a t i o n s  o b t a i n e d  by d i f f e r e n t i a t i o n  w i t h  r e -  
s p e c t  to  t ,  w h i l e  the  s e c o n d  f o l l o w s  f rom (7) d i r e c t l y  w i t h  the  f i r s t  t a k e n  i n t o  a c c o u n t .  
Hence ,  i t  can be c o n s i d e r e d  t h a t  as e + 0 p~6,  p~8 + p6 ,  pdt, weak ly  i n  L~(0 ,  T; L a ( a ,  b ) ) ,  

R E6 § R 6 .  weak ly  in  L=(0 ,  T; H~(a ,  b ) ) .  A f t e r  the  p a s s a g e  t o  the  l i m i t  as ~ + 0 we o b t a i n  
r_vE6 + 0 w e a k l y  in  L 2 (Q)) 

u~ - n~ = / 1 ,  v, ~ - , ,~  + q8 = l , ,  .u,~ - q~ = I~; ( ~ 5 )  

6 ~ w 8 v 8 + 6 - 1  n (n6)a  0. ( 1 6 )  _ + = 0 ,  - + o ,  - = -  = 

Taking account of the available smoothness, it can be asserted that the boundary condition 
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R 6 = 0 at x = b is satisfied in the sense of L 2 while the condition p6 = 0 at x = a is satis- 
fied in the weak sense and is contained in the appropriate integral identities. Moreover, 
the initial condition P~ = 0 at t = 0 is satisfied in the sense of L ~. 

The concluding step in the discussion is the passage to the limit in (15) and (16) as 

6 § 0. Since estimates (14) are uniform in 5, it can then be considered 

{lip0 (t)l I 4- (t)II + IIR (t) < 
The constant c4 is independent of 6. Let the subsequence pS, R ~ denoted as before possess 
the property that as 5 § 0 the convergence of pg, p5 t to the functions P, Pt* holds weakly in 

the space L~(0, T; L2(a, b)) and R 6 to R* weakly in L~(0, T; H~(a, b)). The passage to the 
limit in (15) is realized in the usual way, and we proceed thus in (16). We take any func- 
tion N~L?(O,T;K ~ H~(a,b)). Then it follows from (16) (we emphasize here that the equations 
are satisfied in the sense of integral identities in .which substitution of the trial functions, 
n-- n ~, m-- m 6, q-- q6, respectively, is allowable) 

b 

S 12 (s + - + - - r (? - q )l dx i> 0 

Let us substitute n~x, m~, q~x from (15) here, and let us integrate with respect to t between 
0 and T. We obtain 

T b  T b  

S S (u~n~ + v~mx -i- w~qx - v~-q) dxdt -t- ~ ~ (Jx u8 + ].,v + jaw 6) dxdt ~ 12  (ll ua (~)ll 2 -}-1] v6 (T)II 2 -4-II w~ (T) [12) �9 
O f t  O a 

Because of the mentioned convergence and the inequality limllPS(T)ll ~ IIP(T)[I , we pass here to 

the lower limit. Hence 

Tb 

~.[  {u ( ~ - -  nx) + v (mx- -m~)+w(q~- -q~) - - v (q - -q ) ldxd t~O 
O a 

V R ~  L 2 (0, T; g N Y~(a, b)). 

Hence ,  i n e q u a l i t y  (6) i s  e a s i l y  o b t a i n e d  f o r  a l m o s t  a l l  t ~ ( 0 ,  T) .  The i m b e d d i n g  R ( t ) ~ K  can 
a l s o  be s e t  up a l m o s t  e v e r y w h e r e  f rom ( 1 6 ) ,  where  we do n o t  p r e s e n t  t he  f o u n d a t i o n .  We j u s t  
n o t e  t h a t  t h e  m o n o t o n i c i t y o f  t h e  o p e r a t o r  B i s  u s e d  h e r e .  

Now we prove the uniqueness of the solution in the class of dunctions under considera- 
tion. The equations 

u t  - -  n x  = O,  u t - -  m . ~  4 -  q ---= O,  w t - -  r  = 0 ( 1 7 )  

a r e  s a t i s f i e d  f o r  t h e  d i f f e r e n c _ e  o_f two p o s s i b l e  s o l u t i o n s  P = P1 - - P 2  and R = R1 - - R 2 .  We 
s u b s t i t u t e  t h e  t r i a l  f u n c t i o n  R = R ( t )  = R 2 ( t )  f o r  t h e  s o l u t i o n  P~,  R~ i n  i n e q u a l i t y  ( 6 ) ,  and 

= R ( t )  = R ~ ( t )  f o r  t h e  s o l u t i o n  P2 ,  R~. C o m b i n i n g  t h e  r e l a t i o n s h i p s  o b t a i n e d ,  and t a k i n g  
(17)  i n t o  a c c o u n t ,  we o b t a i n  

b 

W J ( u "  + v 2 + w2) dx ~ O. 
a 

Hence u = v = w = 0 f o l l o w s .  Then we c o n c l u d e  f rom (17) t h a t  a l s o  n = m = q = 0 .  

T h e r e f o r e ,  t he  e x i s t e n c e  o f  t he  s o l u t i o n  and i t s  u n i q u e n e s s  h a v e  b e e n  e s t a b l i s h e d  i n  t h e  
i d e a l  e l a s t i c - - p l a s t i c  p r o b l e m  f o r  t he  beam model  u n d e r  c o n s i d e r a t i o n .  The e x i s t e n c e  o f  t h e  
solution will be established if the passage to the limit as 5 § 0 is realized in the problem 
(7)-(12) for u = I. The foundation for the possibility of such a passage is executed approx- 
imately the same as in Theorem 1 for the case of the rigid--plastic problem. Let us introduce 
a notation for the bilinear form 

and let us 

b 

C(Q,l?)=J'(zn+gm4-hq)dx,  Q = ( z , g , h ) ,  R = ( n ,  ra, q) 
a 

f o r m u l a t e  t h e  c o r r e s p o n d i n g  r e s u l t  i n  t h e  f o r m  o f  a t h e o r e m .  
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THEOREM 2. Le t  f i ,  f i t ~ L 2 ( Q ) ,  i = 1, 2 ,  3 

Po = (Uo, Vo, wo) E Ha 1 (a, b), / / o  = (no, too, qo) ~ H~ (a, b) N K .  

Then there exist functions, and unique ones at that, P = (u, v, w) and R = 
satisfy the relationships (3)-(5) and the inequality 

b 

c (R,, _ + ,l . . )  + + - -  
a 

- - v ( q - - q ) } d x > O  VR = (n,  m , q ) ~ K  n II~(a,b),  
where 

(n, m, q) that 

P --  Po, P~ = Ro npa  t = O; R(t) ~ K almost everywhere in (0, T); 

P, e t ,  R~ ~ L ~ (0, T; L "~ (a, @,  R ~ L ~ (0,  T; H i  (a, b)). 

Now, Le t  us e x a m i n e  t h e  model  o f  a beam w i t h o u t  s h e a r  and  r o t a t i o n a l  i n e r t i a .  The 
e q u i l i b r i u m  e q u a t i o n s  h e r e  have  t h e  fo rm u t  -- nx  = f x ,  w t -  mxx = f 2 .  The f u n c t i o n s  u ,  w, 
n ,  m h a v e  t h e  same m e a n i n g  as  b e f o r e ,  and  f l ,  f2 a r e  t h e  L o n g i t u d i n a l  and  t r a n s v e r s e  Loads .  
We assume t h a t  t h e  f l ow  c o n d i t i o n  has  t h e  form ~1 ( n ,  m) = 1, a nd  ~x i s  a c o n v e x  a nd  c o n -  
t i n u o u s  f u n c t i o n  o f  two v a r i a b l e s  s u c h  t h a t  ~ 1 ( 0 ,  O) 4 1 .  We c o n s i d e r  the  p l a s t i c  f l o w  r a t e  
d e t e r m i n e d  by the  v e c t o r  (u  x -  n t ,  --Wxx -- rat) a s s o c i a t e d  w i t h  the  f u n c t i o n  ~1. As b e f o r e ,  
we introduce the set 

Kx --  {(n, re) In, m ~ L=(a, b), dPl(n, m) ~< t almost everywhere in (a, b)}. 

The following result, referring to the dynamics of an ideal elastic-plastic beam without 
taking account of shear and rotational inertia, will hold. 

THEOREM 3. We assume that fi, fit~L2(Q), i = I, 2, 3 

u o ~ Ha ~ (a, b), w o ~ H 2 (a, b), n o ~ H~ (a, b), m o ~ H~ (a, b), (n o, m o ) ~  K1. 

Then unique functions u, w, n, m exist that possess the properties 

b b 

(utlz + nhx) dx = y f lhdx Vh ~ H~ (a, b); ( l  8) 
a a 

b b 

,!'(u,,g--tng=,)dx: ~ f,zgdx Vg~H2(a,,b); (19) 
a a 

b 

S In, + ,,, m) + + w ex > o  (2o) 
a 

V ( n , m )  ~ K 1  n Vl, 

U, US, W, Wt ~ L ~ (0, T; L 2 (a, b)), 

n ~ L ~ (0, T; Hi  (a, b)), m, rn= ~ L ~ (0, T; L "~ C a, b)), 

U = u0, w ~ w0, n = no, m - -  rn 0 for t = O, 

where (n(t), m(t))~K almost everywhereH -x/=in (0, T). HereV, = {C n, m)In~ ll~(a,b), m, mXX~ L2( a, 
b), m = m x = 0 for x = b (in sense of and H -~/ , respectively) . 

The initial problem approximates the problem with a penalty in the proof of this theorem. 
The boundary conditions for u, w, n, m are contained in the identities (18) and (19) and the 
inequality (20). 

In conclusion, we consider the case of a Cylindrical shell with axial symmetry whose 
equilibrium equation can be written in the form w t -- mxx-- N = f, where w is the deflection 
velocity, m is the axial bending moment, N is the circumferential force per unit length, and 
f is the transverse load. Let the flow condition be described by the function ~2 so that 
#2(m, N) < 1 corresponds to the elastic state and ~2(m, N) = I to the plastic state. We con- 
sider #2(0, 0) ~ I, and ~2 is continuous and convex in the set of Variables. The plastic 
flow velocity vector has the components (--Wxx -- m t, --w -- Nt) and is associated with the men- 
tioned flow condition. LetK~ = {(m, N)Ira, N ~ L~C a, b), qb=(m, N)~ I almost everywhere in (a, 
b ) } , V ~  = {(m, N)Im, m x x ~  L~(a, b), m---- m ~ - -  0 " f o r  x = b ( i n  t h e  s e n s e  o f  H - x / 2  and  H - ~ / 2 ,  r e -  
s p e c t i v e l y ) ,  N ~ L  ~' (a ,  b)  }. 
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The solution of the dynamic, ideal elastic--plastic problem for a cylindrical shell exists 
a n d  i s  u n i q u e .  L e t  us  p r e s e n t  a f o r m u l a t i o n  o f  t h e  c o r r e s p o n d i n g  r e s u l t .  

THEOREM 4. We assume that f, I t a L Y ' ( Q ) ,  wo~H2a (a, b), mo ~ H~(a, b), No ~ L2(a, b), (too, 
No)~K2. Then there exist unique functions w, m, N that satisfy the relationships 

w, w t, m, m t, N ,  Ar t ~ L~(O, T; L'~(a, b)), (21 )  
b 5 

j '  (w,!~ - , ,~h= - N h )  d~ = f jhJ~ vh ~ < (~, b); 
(l a 

b 

j '  {,'nt (~n - -  m) + Nt (5" - -  N)  q- w (;z.~::~ --m.,:x) -~ w (X r - -  N)} dx > 0 (22 )  

V (~, R) ~ Ks n V~; 
~P= w o, m = m o ,  N = N  o for t----- 0; (23)  

(re(t), N(t)) ~ K2 almost everywhere (24 )  

P r o b l e m  ( 2 1 ) - ( 2 4 )  i s  a p p r o x i m a t e d  b y  t h e  f o l l o w i n g  i n  t h e  p r o o f  o f  t h i s  r e s u l t  (6 > 0 i s  
a parameter which later tends to zero) 

w ~ -  ~ - '  N ~ m~ mxx = / ,  + w= + 6- 'B (mr .,~;~)~ = 0, 

N~ + w~ + 6-~B (m", N6)~ = 0, 
w 6 = w0, m ~ = m0, N ~ = No for t = 0, 

W 6 6 //~8 /7/8 - - - -U'x=O for x = a; ---- x = O  for x ---- b. 

Here B(m 5, NS)i denotes components of the penalty operator associated with the set K2 and 
acting from [L 2(a, b)]2 into [L 2(a, b)]2 

1 o 

2. 

3. 

4. 

5.  
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